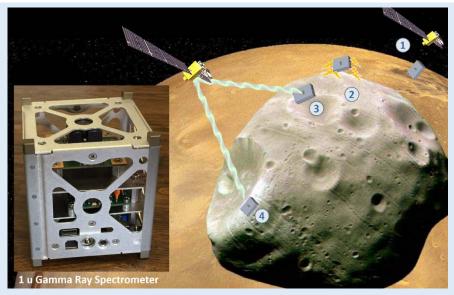


Ultra-bright scintillator for planetary gamma ray spectroscopy

PI: Thomas H. Prettyman/Planetary Science Institute

Target: Solid surfaces of solar-system bodies, small and large, planetary atmospheres, surface of Venus; deployable on most platforms (orbiters, rovers, landers, logging tools)


Science:

- Concentration of major rock-forming elements, selected trace elements, and volatiles (H, C); composition spatial maps and layering
- Geochemistry of targets, constraints on planetary formation (K/Th) and differentiation (aqueous & magmatic processes)
- · Atmospheric dynamics and surface interactions

Objectives:

- Evaluate performance for prospective missions
- Grow 2-in. diameter SrI₂ crystals and engineer ruggedized sensor
- Test and evaluate SrI₂ crystals read out by silicon photomultiplier (SiPM)
- Determine radiation damage susceptibility and mitigation strategies

CoIs: Arnold Burger/Fisk University; Naoyuki Yamashita/Planetary Science Institute; James L. Lambert, Jet Propulsion Laboratory

 SrI_2 will enable compact gamma ray spectrometers with improved energy resolution and performance for elemental quantification.

Key Milestones:

- Year 1: Study performance for asteroid rendezvous missions; Evaluate radiation damage susceptibility
- Year 2: Study Venus in situ mission (including active interrogation); Manufacture large SrI₂ crystals
- Year 3: Study lunar sample return mission; Deliver a large-volume $\rm SrI_2/SiPM$ module; Complete testing and evaluation; publish results

TRL 3 to 4